西安交通大学《JPS》:打破使用氧等离子体处理的单层石墨烯的直接甲醇燃料电池中的电导率-选择性权衡
2025-07-18 10:11:59 作者:本网发布 来源:材料分析与应用 分享至:



成果简介


直接甲醇燃料电池(DMFC)相比氢燃料电池具有更简单的燃料系统,且在便携式和小型化电源领域展现出广阔应用前景。然而,商业化Nafion膜的甲醇渗透问题会在阴极产生混合电位,导致开路电压(OCV)降低及整体性能下降。尽管将单层石墨烯引入Nafion膜可缓解甲醇渗透并提升OCV,但往往会牺牲质子导电性本文,西安交通大学史乐教授团队在《Journal of Power Sources》期刊发表名为“Breaking the conductivity-selectivity trade-off in direct methanol fuel cells using oxygen plasma-treated monolayer graphene”的论文,研究将氧等离子体处理的单层石墨烯嵌入Nafion膜中,可同时提升质子导电性和选择性。


这种双重提升使DMFC性能较商业Nafion膜提升92.74%,功率输出分别为60℃时的134.56 mW cm−2和90℃时的254.84 mW cm−2。分子动力学模拟表明,通过等离子体处理引入的含氧功能基团形成了纳米孔,增强了石墨烯与Nafion之间的界面亲和力,从而改善了界面处的水分分布和质子传导。这种方法有效打破了导电性与选择性之间的权衡关系,为提升DMFC性能提供了可行解决方案。



图文导读


图1. Schematic of the synthesis of Nafion/nanoporous graphene/Nafion. a) CVD graphene on copper substrate (centimeter scale, actual size 3 × 3 cm2); b) plasma treatment on copper substrate; c) D520 spin-coating; d) N212 hot-press; e) copper etching in FeCl3; f) air-dried nanoporous graphene on N212; g) another D520 spin-coating on the graphene side; h) another N212 hot-press (actual size 3 × 3 cm2).


图2. Characterization of CVD graphene and the composite N/G/N membrane. a) SEM of graphene on SiO2/Si, rectangles indicate the areas for Raman characterization in b); b) Raman spectra of graphene on SiO2/Si substrate; c) SEM of graphene on N212; d) cross section SEM of N/G/N membrane; e) contact angle of N212; f) contact angle of N212 with graphene transferred; g) photograph of the composited N/G/N membrane; h) photograph of the composited MEA.


图3. Characterization of the perforated graphene. a) photograph of the plasma treating process (left: Ar 20W; right: O2 7W with homemade Faraday cage); b) Raman spectra of perforated graphene; c) Defect density analysis from the Raman spectra in b).


图4. Membrane performance of N212/nanoporous graphene/N212 composite membranes. a) proton conductivity, b) CH3OH permeation, c) selectivity of proton over CH3OH.


图5Polarization curve of N212/nanoporous graphene/N212 composite membranes in 60 °C DMFC.


图6Fuel cell performance comparison of N212/nanoporous graphene/N212 composite membranes.


图7. Voltage degradation of best-performed N/G O10 s/N and commercial N115 at 0.08 mA cm−2, 60 °C.


图8Water distribution analysis at the interfacial regions of Nafion/nanoporous graphene/Nafion composite membranes (grey dots indicate the position of graphene layer). a1, a2) bulk Nafion (λ = 20); b1, b2) Nafion/pristine graphene/Nafion; c1, c2) Nafion/H decorated nanoporous graphene/Nafion; d1, d2) Nafion/epoxy decorated nanoporous graphene/Nafion; e1, e2) Nafion/hydroxyl decorated nanoporous graphene/Nafion; f) Layer-to-layer distribution functions analysis between atoms in water molecule and graphene; g) Layer-to-layer distribution functions analysis between atoms in Nafion and graphene.



小结


一系列夹层结构的Nafion/等离子体穿孔石墨烯/Nafion质子交换膜被合成,以保持对甲醇穿透的显著阻抗,同时克服由原始石墨烯的高质子渗透屏障引起的性能限制。引入氧等离子体穿孔石墨烯后,质子导电率较原始石墨烯膜提高了超过三倍。在燃料电池测试中,N/G O10 s/N膜在开路电压(OCV)方面优于商业N212膜,并实现了最大功率密度92.74%的提升。这一改进归因于质子导电性的提升,同时保留了石墨烯对甲醇的选择性。等离子体穿孔不仅在原始石墨烯中引入选择性纳米孔,通过更大孔径提升质子导电性,还在纳米孔边缘添加功能基团,影响邻近水分布情况。氧等离子体可引入羟基促进质子渗透。然而,延长氧等离子体处理时间会导致羟基转化为环氧基团,反而阻碍质子渗透。这一现象导致石墨烯等离子体处理时间延长时性能下降。因此,适当的时间控制至关重要。根据我们的实验结果,采用法拉第笼进行6秒氩等离子体处理和10秒氧等离子体处理可实现最佳燃料电池性能。这项工作为在DMFCs中应用纳米孔单层石墨烯作为新一代质子交换膜铺平了道路。

文献:

https://doi.org/10.1016/j.jpowsour.2025.237800



免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

    标签:
相关文章
无相关信息